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Lattice Boltzmann Simulation of Shear-Thinning
Fluids∗
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It is shown how shear-thinning flow can be simulated without the need for
numerical differentiation by following a lattice Boltzmann approach. The basic
idea of is to combine the Cross model of viscosity with a 3D multiple relaxa-
tion time lattice Boltzmann method and to extract the required velocity deriva-
tives from intrinsic quantities of the lattice Boltzmann scheme. Computational
results are presented for a simple benchmark and for the simulation of liquid
composite moulding.

KEY WORDS: Lattice Boltzmann methods; shear-thinning fluids; liquid com-
posite moulding.

1. INTRODUCTION

The aim of the present paper is to assess the capability of the relatively
new and increasingly popular lattice Boltzmann methods to solve prac-
tically relevant problems in a very convincing way. In particular, it will
be demonstrated how to avoid the troublesome procedure of numerical
differentiation during the simulation of shear-thinning fluids by following
a lattice Boltzmann approach.

Fluids such as water and glycerin, whose shear stress is at constant
temperature proportional to the rate-of-strain, are referred to as New-
tonian fluids and their flow is governed by the classical Navier–Stokes
equations. Any fluid that is not governed by the Newtonian relation of
shear stress and rate-of-strain, e.g. blood plasma, tooth-paste, egg-white,
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corn starch suspensions, and ketchup, is called non-Newtonian. The sci-
ence studying the behaviour of such fluids is called rheology. According to
their behaviour, non-Newtonian fluids are subdivided into several groups,
among them visco-plastic (e.g. tooth-paste), visco-elastic (e.g. egg-white),
shear-thickening (e.g. corn starch suspensions), and shear-thinning (e.g.
ketchup) fluids.

One class of shear-thinning fluids are the in situ polymerising polya-
mides used in liquid composite moulding.(19,20) However, software tools for
simulating liquid composite moulding are typically based on Darcy’s law,(4)

which relates the flow rate of a Newtonian fluid in a porous medium to
the pressure drop across the medium. As a first step towards establishing a
Darcy-like law for shear-thinning fluids, the present paper describes a stable
and robust numerical method for simulating shear-thinning flow in com-
plex geometries, such as the fibre beds used in liquid composite moulding.
However, the mathematical model considered in the following neglects the
eventual solidification of in situ polymerising polyamides during the mould-
ing process, so comparisons to laboratory measurements do not make sense
at the current stage of this research.

For a shear-thinning fluid, viscosity depends on certain derivatives of
the velocity field. A straightforward idea for computing those derivatives
would be to numerically differentiate the velocity field obtained by the
flow solver. The main difficulty of this approach is that, due to the nature
of differentiation itself, it is instable in the sense that small perturbations
in the initial data lead to large deviations in the solution. However, Ginz-
burg and Steiner(7) demonstrated how those derivatives can be obtained
in lattice Boltzmann methods by straight calculation without numerical
differentiation. Because of this feature, lattice Boltzmann schemes are par-
ticularly suitable for the simulation of shear-thinning flow. Note that by
choosing an appropriate viscosity function, the method presented below
can be adopted straightforwardly to shear-thickening flow.

In general, lattice Boltzmann methods are widely believed to offer
excellent possibilities for simulating non-Newtonian flow. In 1993, Aharo-
nov and Rothman,(1) who also considered shear-thinning flow, as well as
d’Humières and Lallemand(13) published the first papers on the subject,
Giraud, d’Humières, and Lallemand(9,10) developed a 2D lattice Boltzmann
model of visco-elastic flow, and Lallemand et al.(17) provided a 3D one.
Ginzburg and Steiner(7) considered lattice Boltzmann schemes for visco-
plastic flow. In contrast to the approach by Aharonov and Rothman, the
work presented below is based on the more realistic Cross model instead
of a simple power law, uses a more elaborate lattice Boltzmann scheme, and
pays due attention to stable and efficient computation of velocity derivatives.
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A relatively detailed overview of the voluminous work done in numerical
simulation of non-Newtonian fluids is given by Owens and Phillips.(18)

The article is structured as follows. Section 2 gives an overview of
mathematical modelling of shear-thinning fluids, while Section 3 contains
a general introduction to lattice Boltzmann methods. In Section 4, it is
shown how lattice Boltzmann methods can be applied to the simulation of
shear-thinning flow without making use of numerical differentiation, and
Section 5 presents computational results for a simple benchmark problem
(Section 5.1) and the simulation of liquid composite moulding (Section
5.2). Conclusions are then drawn in Section 6.

In the following, summation is implicitly assumed over repeated
Greek but not Latin indices. The present paper concentrates on Stokes
flow but all the models and methods can be applied to the Navier–Stokes
regime as well.

2. MATHEMATICAL MODEL

Slowly moving incompressible fluids in a domain [0, T ] ×� with T ∈
R+ and � ⊂ R

d , d = 2,3, are typically modelled by the time-dependent
Stokes equations

∂αuα =0 and ∂t (�uα)+�Fα = ∂βσαβ, (1)

where α,β =1, . . . , d denote the Cartesian coordinate directions in R
d , ∂α,

∂β , etc., respectively, stand for the space derivative in direction α, β, etc.,
∂t represents the time derivative, � is the constant density of the fluid, uα

represents the αth component of the velocity vector u, and Fα stands for
the αth component of the constant external acceleration vector F . Fluids
for which the stress tensor σαβ takes the form

σαβ =−pδαβ +µ(∂αuβ + ∂βuα)

with pressure p and constant viscosity µ>0 are referred to as Newtonian
and all others are called non-Newtonian.

It has been found by experiments that there are many fluids, especially
liquid polymers, for which the viscosity µ is a linearly decreasing function
of the shear rate

γ̇ (u)=
√

1
2
(∂βuα + ∂αuβ)(∂αuβ + ∂βuα)
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tending to some limit µ∞ for γ̇ → ∞,(18) as exemplified in Fig. 1.
Such fluids are called shear-thinning or pseudo-plastic. There are several
approaches to modelling shear-thinning behaviour, e.g. the simple power
law model(1)

µ (γ̇ )=Cplγ̇
mpl−1,

where Cpl and mpl are constants, the Carreau–Yasuda model(24)

µ (γ̇ )=µ∞ + (µ0 −µ∞)
(

1+ (CCY γ̇ )
)mCY /a

,

with constants µ0 = µ(0), µ∞ = limγ̇→∞ µ(γ̇ ), CCY , mCY , and a, as well
as the Cross model(3)

µ (γ̇ )=µ∞ + µ0 −µ∞
1+ (Cγ̇ )m

, (2)

where again µ0 =µ(0) and µ∞ = limγ̇→∞ µ(γ̇ ), while C and m are further
constants. Note that Cross model and Carreau–Yasuda approach are able
to predict the Newtonian plateaus at very high and very low shear-rates
(cf. Fig. 1), while the power law model is suitable only for the shear-thin-
ning region in between. In the following, the Cross model is used exclu-
sively. However, exchanging the viscosity model is straightforward in lattice
Boltzmann simulations.

Fig. 1. The viscosity function of a typical shear-thinning fluid. Note the Newtonian behaviour
for very small and very large shear rates, and the logarithmic scale on both axes.
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3. LATTICE BOLTZMANN APPROACH

The lattice Boltzmann method(21−−23) is a relatively new and inno-
vative numerical approach for solving the time-dependent Stokes equa-
tions (1). The main idea of this approach is not to solve equations (1)
directly but to simulate particle dynamics on a mesoscopic scale. The solu-
tion of the macroscopic Stokes equations is then obtained from discrete
moments of the mesoscopic quantities (see below). Note that after a sim-
ple modification, this method solves the Navier–Stokes equations instead
of the much simpler Stokes equations (1).

In lattice Boltzmann schemes, it is typically assumed that the spatial
domain �⊂R

d is covered by a lattice with equidistant nodes.2 The set of
these nodes is referred to as X . At a given time t , the particle densities
fj (t,x)=f (t,x; cj ) of fluid particles located at position x ∈X and moving
with velocity cj ∈Vq are examined, where Vq = {cj : j =0, . . . , q −1

}
with

some q ∈N contains only a finite number of velocity vectors.
The evolution of particle density fj (t,x) is described by the lattice

Boltzmann equation(12)

fj (t + δt,x + δtcj ) = fj (t,x)

+δt
∑
k,l

λk

(
fl(t,x)−f

eq
l (ρ(t,x),m(t,x))

)
ek;lek;j

+3δtf ∗
j cj ;αFα,

where λk are the eigenvalues of the so-called collision matrix A and ek are
the corresponding eigenvectors. Notations like ek;l , cj ;α, etc. stand for the
lth component of the vector ek, the αth component of the vector cj , etc.,
and

mα(t,x)=
∑
j

cj ;αfj (t,x).

Furthermore, f ∗
j are model dependent weights, Fα stands for the constant

external acceleration vector that already appeared in the Stokes equa-
tions (1), and

f
eq
j (ρ,m)=f ∗

j

(
ρ +3mαcj ;α

)
.

2In fact, there are lattice Boltzmann schemes where this assumption is no longer maintained,
see e.g. Succi(22) for an overview. However, this paper is restricted to the classical approach,
where equidistant lattice nodes are assumed.
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The macroscopic variables ρ and uα are obtained via(2,6)

ρ(t,x)=
∑
j

fj (t,x) and uα(t,x)= mα(t,x)

ρ(t,x)
− Fα

2
, (3)

while pressure p can be computed by

p(t,x)= 1
3

(ρ(t,x)−�) ,

where � represents the constant density of the incompressible fluid.
In the following, exclusively a regular cubic lattice in three space

dimensions will be used, with q =15 and

c0 = (0,0,0)T , c1,3 =±(1,0,0)T , c2,4 =±(0,1,0)T ,

c5,6 =±(0,0,1)T , c7,13 =±(1,1,1)T , c8,14 =±(−1,1,1)T ,

c9,11 =±(−1,−1,1)T , c10,12 =±(1,−1,1)T .

Following Ginzburg and Steiner,(8) the eigenvalues λk are chosen such that

λ0,1,2,3 =0, λ4,5,6,7,8 =λµ, λ9 =λa, λ10,11,12 =λb, λ13 =λc, λ14 =λd

with corresponding eigenvectors

e0;j = 1√
15

, e1;j = 1√
10

cj ;1, e2;j = 1√
10

cj ;2, e3;j = 1√
10

cj ;3,

e4;j =18
√

2f ∗(cj )cj ;1cj ;2, e5;j =18
√

2f ∗(cj )cj ;2cj ;3, (4a)

e6;j =18
√

2f ∗(cj )cj ;1cj ;3, e7;j = 27

2
√

3
f ∗(cj )

(
c2
j ;1 − ‖cj‖2

2

3

)
, (4b)

e8;j = 9
2
f ∗(cj )

(
c2
j ;2 − c2

j ;3
)

, e9;j = 3√
8
f ∗(cj )cj ;1cj ;2cj ;3, (4c)

e10;j = 9√
10

f ∗(cj )
(

2c3
j ;1 −3cj ;1

(
c2
j ;2 + c2

j ;3
))

,

e11;j = 9√
10

f ∗(cj )
(

2c3
j ;2 −3cj ;2

(
c2
j ;1 + c2

j ;3
))

,

e12;j = 9√
10

f ∗(cj )
(

2c3
j ;3 −3cj ;3

(
c2
j ;1 + c2

j ;2
))

,

e13;j = 1√
18

f ∗(cj )
(
‖cj‖2

2 −1
)

, e14;j =
{

1/
√

10 for j =1, . . . ,6
−2/

√
90 otherwise.
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Note that

λµ =−2/(6µ+1) (5)

and λa,b,c,d are very often set to −1.

4. LATTICE BOLTZMANN MODEL OF SHEAR-THINNING FLUIDS

Consistency of the lattice Boltzmann equation can be analysed either
by direct asymptotic analysis,(15) by a moments approach,(14) or by
Chapman–Enskog analysis.(5) Chapman–Enskog analysis is based on an
asymptotic expansion of fj around f

eq
j ,

fj (t,x)=f
eq
j (ρ(t,x),m(t,x))+ εf

(1)
j (t,x)+ ε2f

(2)
j (t,x)+O

(
ε3
)

, (6)

with a small parameter ε. In this context, it can be shown that(8)

εf
(1)
j = 3

λµ

(
cj ;αcj ;β − ‖cj‖2

2

3
δαβ

)
f ∗

j ∂αmβ + 1
λc

(
‖cj‖2

2 −1
)

f ∗(cj )∂αmα,

and using Eqs. (4) it turns out that

λµ
∑
j

εf
(1)
j e4,j /‖e4‖2

2 = ∂2m1 + ∂1m2,

λµ
∑
j

εf
(1)
j e5,j /‖e5‖2

2 = ∂3m2 + ∂2m3,

λµ
∑
j

εf
(1)
j e6,j /‖e6‖2

2 = ∂3m1 + ∂1m3,

λµ
∑
j

εf
(1)
j e7,j /‖e7‖2

2 = ∂1m1 − (∂2m2 + ∂3m3)/2,

λµ
∑
j

εf
(1)
j e8,j /‖e8‖2

2 = (∂2m2 − ∂3m3)/2.

Together with the incompressibility assumption ∂αmα = 0, this pro-
vides a uniquely solvable linear system of equations for the rate-of-strain
tensor ∂αmβ + ∂βmα, from which the shear rate

γ̇ (m)=
√

1
2
(∂βmα + ∂αmβ)(∂αmβ + ∂βmα)



230 Kehrwald

can be directly calculated. In Eq. (3), Fα is constant and ρ is constant up
to O (

ε2
)
,(11,14) so

γ̇ (u(t,x))= γ̇ (m(t,x))

ρ(t,x)
+O

(
ε2
)

,

and Eq. (6) yields

εf
(1)
j =fj −f

eq
j +O

(
ε2
)

.

As a consequence, the shear rate γ̇ (u) can be determined directly
from known quantities, without the need for numerical differentiation.

Once the shear rate is known at each lattice point, local viscosity can
be determined via the Cross model (2) and inserted into Eq. (5). In this
way, shear-thinning behaviour is modelled in the lattice Boltzmann simu-
lations below.

5. NUMERICAL RESULTS

In the following, computational results obtained with the numerical
method described in Section 4 will be presented. In particular, Section 5.1
contains results for a simple benchmark problem and demonstrates the
difference in flow behaviour between shear-thinning fluids and Newtonian
ones, while Section 5.2 deals with the simulation of a real liquid composite
moulding.

5.1. Channel Flow

The aim of this Section is to demonstrate the qualitative difference in
flow behaviour of shear-thinning fluids and fluids with constant viscosity.
For this purpose, the flow of an artificial shear-thinning fluid with

µ(γ̇ )=0.0001+ 0.01−0.0001

1+ (80γ̇ (u))1.3
Pa s (7)

is compared to an artificial Newtonian fluid with µ = 0.001 Pa s. The
benchmark considered here is flow through a 2D rectangular channel with
solid boundaries at top and bottom and periodic boundaries at left and
right. The distance between the plates is 32 µm. Initially, the fluid is at
rest, and a constant force of 1000 N/m3 pointing from left to right is
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Fig. 2. Velocity profiles for shear-thinning and Newtonian flow (left) together with shear
rate (middle) and viscosity (right) for shear-thinning flow in a 2D channel.

applied to induce the flow. Note that all those values are chosen exclu-
sively for demonstrating shear-thinning effects and not to represent a real-
istic situation. Numerical simulation in a more realistic framework will be
considered in Section 5.2.

Figure 2 shows the velocity profile of both fluids at stationary state
together with shear rate and viscosity of the shear-thinning one at stationary
state. While the Newtonian fluid exhibits the well-known parabolic velocity
profile, the corresponding curve for shear-thinning flow is flattened around
its maximum. Heuristically spoken, the reason why this happens is the fol-
lowing: The shear rate is equal to zero at the maximum of the velocity pro-
file and is monotonously increasing towards the solid boundaries. Therefore,
the viscosity has its maximum at the same position as the flow speed, i.e.
in the centre of the channel, and is monotonously decreasing towards the
solid boundaries. This behaviour of the viscosity allows the flow to speed
up away from the centre of the channel.

The viscosity values applied here are chosen exclusively for the pur-
pose of adequately exemplifying the qualitative difference of shear-thin-
ning and Newtonian flow. Increasing or decreasing the viscosity of the
Newtonian fluid would decrease respectively increase the maximum flow
speed of the Newtonian fluid, while modifying (7) would change the quan-
titative behaviour of the shear-thinning flow.

5.2. Liquid Composite Moulding

In the present Section, some results from a joint project of Fraun-
hofer ITWM and Institut für Verbundwerkstoffe GmbH (IVW), Kais-
erslautern, Germany, are presented.(19,20) The aim of this project is to
model the injection of in situ polymerising polyamides into beds of car-
bon fibres, where in situ polymerising means the polyamides have already
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Fig. 3. The experimental apparatus used for the injection of polyamides in fibre beds. Left:
the whole device consisting of the strictly fixed fibre bed, the liquid reservoir, and a system of
flexible tubes. Right: top view of the partly saturated fibre bed, where the flow front is clearly
visible. The pictures appear courtesy of IVW GmbH.

started to solidify when they are injected into the fibre bed. Injecting
in situ polymerising polyamides into beds of carbon fibres is a typical way
of producing reinforced plastic materials.

The simulations performed in this project are based on experiments
done with the apparatus shown in Fig. 3. The flow in this experimental
apparatus is driven by a pressure drop δp in x3-direction and the simu-
lations are performed for flow induced by a constant volume force. How-
ever, under the assumption that δp is constant over the length L of the
flow system, pressure driven flow is equivalent to flow induced by the con-
stant volume force F = (0,0, δp/L)T .

In order to arrange a computer model of the flow channel, a solid-
ified material sample produced in a laboratory experiment is cut along a
line perpendicular to the flow direction, and highly resolved images of the
cutting area are taken. Those images are then de-noised and extended to
3D space. The extended fibre bundles are considered to be rigid obstacles
at fixed positions. Fig. 4 shows a grinding image of the fibre bed together
with a virtual grinding image of the associated flow geometry. Note that
single fibres are not resolved in the virtual flow geometry, only fibre bun-
dles as a whole are taken into account. This is reasonable because the
flow inside the fibre bundles is negligible compared to the flow between the
fibre bundles.(16,19,20)

The fluid under investigation is the epoxy resin Ly 113/Hy 97, which
is polymerising due to a chemical reaction. The shear-dependent viscosity
of Ly 113/Hy 97 at different time intervals after the start of the chem-
ical reaction is represented by the Cross models shown in Fig. 5, which
are based on measurements performed at IVW.(19,20) In the following, the
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Fig. 4. Top: a grinding surface image of the fibre bed, where the bright spots mark the
fibre bundles and the dark spots mark some air bubbles enclosed in the material probe (cour-
tesy of IVW GmbH). Bottom: the associated digital model of the flow channel, where white
marks the fibre bundles and black marks the flow channel. The lattice size is 1024×224×6.

Fig. 5. Cross models for the viscosity function of Ly 113/Hy 97 at different time intervals
after the start of the solidification. The functions are based on measurements performed at
IVW.(19,20)

viscosity function measured 4800 s after the beginning of solidification,
i.e.

µ(γ̇ )=1.2+ 500−1.2

1+ (80γ̇ (u))1.3
Pa s

will be used to represent Ly 113/Hy 97. The chemical process of polymer-
isation is not considered here.
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Fig. 6. Velocity field in the dimensionless unit u/umax for a Newtonian fluid (top) and Ly
113/Hy 97 (bottom) in a bed of fibre bundles.

Fig. 7. Flow speed versus pressure drop for Ly 113/Hy 97 and a Newtonian fluid with
µ=15.32 Pa s.

The behaviour of the epoxy resin will be compared to that of a New-
tonian fluid with viscosity µ = 15.32 Pa s. In analogy to Section 5.1, the
Newtonian viscosity is chosen exclusively for the purpose of providing a
useful comparison.

A qualitative comparison of flow fields for Ly 113/Hy 97 and the
constant viscosity fluid is given in Fig. 6, and a corresponding quantita-
tive plot of average flow speed versus pressure drop is given in Fig. 7. At
low pressure drops, the viscosity of Ly 113/Hy 97 remains in the upper
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Newtonian regime (µ = 500 Pa s), thus inducing an average flow speed
which is linearly increasing with pressure drop, in analogy to the flow
speed of the Newtonian fluid. When the pressure drop is large enough,
the shear-thinning effect eventually causes the average flow speed of the
resin to increase until it reaches its lower Newtonian regime (µ = 1.2 Pa
s), where the average flow speed is higher than that of the Newtonian
fluid. Note that the viscosity of the Newtonian fluid was chosen between
the Newtonian limits of Ly 113/Hy 97 in order to effectively visualize
the influence of shear-thinning behaviour on the speed–pressure diagram
(Fig. 7).

6. CONCLUDING REMARKS

It was demonstrated how shear-thinning fluids can be easily mod-
elled without necessity of numerical differentiation by following a lattice
Boltzmann approach. The capability of this approach was underlined by
numerical simulation of a simple benchmark problem and a real labora-
tory experiment. Computations for shear-thinning fluids are a field where
lattice Boltzmann methods have clearly proven their practical usability
for industrially relevant problems and their ability to compete with other
numerical methods for simulating fluid flow.

The proposed mathematical model of shear-thinning fluids does not
cover time-dependence of the viscosity function, so it is suitable only
for rough qualitative simulation of in situ polymerising polyamides. Note,
however, that local viscosity at each lattice point is directly computed in
each time step from strictly local quantities, so time dependence of the
Cross model can be introduced in a straightforward way. Furthermore, it
would be worthwhile to replace the extended 2D geometries representing
the fibre bundles used in liquid composite moulding by real 3D micro-
structures, but this task is left for future research.
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